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Abstract. The amplitudes for decays of the type Bd,s → Ds,dDs,d, have no factorizable contributions,
while Bd,s → Ds,dD∗

s,d, and Bd,s → D∗
s,dD∗

s,d have relatively small factorizable contributions through
the annihilation mechanism. The dominant contributions to the decay amplitudes arise from chiral loop
contributions and tree level amplitudes which can be obtained in terms of soft gluon emissions forming a
gluon condensate. We predict that the branching ratios for the processes B̄0

d → D+
s D−

s , B̄0
d → D+∗

s D−
s and

B̄0
d → D+

s D−∗
s are all of order (2–3) × 10−4, while B̄0

s → D+
d D−

d , B̄0
s → D+∗

d D−
d and B̄0

s → D+
d D−∗

d are of
order (4–7) × 10−3. We obtain branching ratios for two D∗’s in the final state of order two times bigger.

1 Introduction

Recently, many theoretical and experimental studies in
B-meson physics have been done. The most extensive in-
vestigations have been done for cases of B decay modes
into the light mesons (e.g. B → ππ, B → Kπ) due to their
importance in the determination of Cabibbo–Kobayashi–
Maskawa (CKM) matrix elements. On the other hand, B
decays into charmed mesons also present an important
issue for experimental and theoretical analysis. As it was
pointed out by the authors of [1,2], final state interactions
(FSI) including charmed intermediate states can give sig-
nificant contributions to the decay amplitudes, especially
in the case of the B → Kπ decay modes [1]. In addition,
the branching ratios for Bd decay into D−D+

s , D−∗D+
s ,

D−D∗+
s and D∗−D∗+

s [3] have been measured. A previ-
ous theoretical study of the decay mode Bd → D−D+

s

[4] showed that the non-factorizable contributions coming
from chiral loops give an increase of order 10% in the rate
compared to the factorized limit. The rate found in [4]
is in good agreement with the experimental result. On
the other hand, the B̄0 → D+

s D−
s and B̄0

s → D+D−
decay modes have no factorizable amplitudes and they
are realized only through non-factorizable contributions
as it was shown in [5]. At the quark level, these de-
cays a priori proceed through the annihilation mechanism
bs̄ → cc̄ and bd̄ → cc̄, respectively. Within the factor-
ized limit this mechanism will give a zero amplitude due
to current conservation, as in the case of D0 → K0K0

[6]. Therefore Bd,s → Ds,dDs,d , Bd,s → Ds,dD
∗
s,d , and

a e-mail: j.o.eeg@fys.uio.no

Bd,s → D∗
s,dD

∗
s,d present a fertile ground for the investi-

gation of non-factorizable 1/Nc suppressed contributions.
In this paper we want to extend our previous study

of Bd,s → Ds,dDs,d decays to cases with one or two D∗’s
in the final state. Namely, at B-factories the decays to
one pseudoscalar and one vector D-meson are easier ac-
cessable due to better statistical accuracy (they can be
reconstructed more inclusively than decays to two pseu-
doscalars) [7]. In this case non-factorizable contributions
arise due to the annihilation mechanism. However, its am-
plitude is suppressed by a numerically less favorable com-
bination of Wilson coefficients and is expected to be of
the same order of magnitude as non-factorizable contribu-
tions. Since the energy release for B decays to two charm
mesons is relatively small (of order 1 GeV), the QCD im-
proved approaches [8] used to describe B decays to light
mesons are not expected to hold. Therefore, we develop a
different approach.

As in [5] our framework will be threefold: We use the
standard effective Lagrangian approach for the quark pro-
cess bq → cc (where q = d, s) found at a scale below mc

[9]. Second, we use heavy–light chiral perturbation theory
for interactions between heavy mesons and light pseudo-
scalar mesons [10] to calculate non-factorizable contri-
butions in terms of chiral loops. Third, to estimate the
contributions from 1/Nc suppressed terms at tree level
[11,12] within heavy–light chiral perturbation theory, we
use a recently developed heavy–light chiral quark model
(HLχQM) [13] based on the heavy quark effective field
theory (HQEFT) [14].

Within our approach, the chiral symmetry breaking
scale Λχ ∼ 1 GeV is the matching scale for pertubative
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QCD, chiral perturbation theory, and HLχQM. The lat-
ter is also the bridge between them. In Sect. 2, we describe
our framework. In Sect. 3 we present the factorizable (an-
nihilation), gluon condensate and chiral loop contributions
to the amplitudes. In Sect. 4 we give the numerical results
and conclusions.

2 Framework

2.1 Effective Lagrangian at quark level

Based on the electroweak and quantum chromodynamical
interactions, one constructs an effective Lagrangian at the
quark level in a standard well known way:

LW =
∑

i

Ci(µ) Qi(µ) , (1)

where Ci(µ) = −GF√
2
VcbV

∗
cq ai(µ), q = d, s and ai(µ) are di-

mensionless Wilson coefficients that carry all information
of the short distance (SD) physics above the renormaliza-
tion scale µ. The matrix elements of the operators Qi(µ)
on the other hand, take care of all non-perturbative, long
distance (LD) physics below µ. The relevant operators in
our case are

Q1 = 4(qLγαbL) (cLγαcL) ,

Q2 = 4(cLγαbL) (qLγαcL) , (2)

where L denotes a left-handed particle. Contributions
from other (say, penguin) operators are neglected due to
smallness of their Wilson coefficients.

In order to obtain all matrix elements of the La-
grangian (1) we need the Fierz transformed version of the
operators in (2). To find these, we use the relation

δijδln =
1

Nc
δinδlj + 2 tain talj , (3)

where i, j, k and n are color indices running from 1 to 3
and a is a color octet index. One obtains

QF
1 =

1
NC

Q2 + 2Q̃2 , QF
2 =

1
NC

Q1 + 2Q̃1 , (4)

where the superscript F stands for “Fierzed”, and

Q̃1 = 4(qLγαtabL) (cLγαtacL) ,

Q̃2 = 4 (cLγαtabL) (qLγαtacL) , (5)

where ta denotes the color matrices.
In order to calculate the matrix elements of the oper-

ators Q̃1 and Q̃2 we will use a version of the heavy–light
chiral quark model (HLχQM) developed in [13]. It belongs
to a class of models extensively studied in the literature
[15–21] and is appropriate for describing interactions in
which the transferred energy is of the order 1 GeV. This
sets the scale in (1) to µ ∼ Λχ ∼ 1 GeV, which is by con-
struction the matching scale within our approach. At this
scale one finds a1 � −0.35−0.07i and a2 � 1.29+0.08i [4,
9]. Note that the ai’s are complex below the charm scale.

2.2 Heavy–light chiral perturbation theory

The construction of heavy–light chiral perturbation theory
is based on the heavy quark effective theory (HQEFT)
[14], which is a systematic 1/mQ expansion in the heavy
quark mass mQ. The Lagrangian is obtained by replacing
the heavy quark Dirac field Q(x) = b(x), c(x) or c(x) with
a “reduced” field Q

(+)
v (x) for a heavy quark, and Q

(−)
v (x)

for a heavy anti-quark. These are related to the full field
Q(x) in the following way:

Q(±)
v (x) = P±e∓imQv·xQ(x) , (6)

where P± = (1± γ · v)/2 are projecting operators and v is
the velocity of the heavy quark. The Lagrangian for heavy
quarks then reads

LHQEFT = ±Q
(±)
v iv · D Q(±)

v + O(m−1
Q ) , (7)

where Dµ is the covariant derivative containing the gluon
field and O(m−1

Q ) stands for the 1/mQ corrections [12],
which will not be considered in this paper.

After integrating out the heavy and light quarks, the
effective Lagrangian for heavy and light mesons up to
O(m−1

Q ) can be written as [13,22]

L = ∓Tr
[
H

(±)
a iv · DbaH

(±)
b

]
−gATr

[
H

(±)
a H

(±)
b γµγ5Aµ

ba

]
+ ... , (8)

where H
(±)
a is the heavy meson field containing a spin zero

and a spin one boson:

H(±)
a ≡ P±(P (±)

aµ γµ − iP (±)
a5 γ5) . (9)

The field P
(+)
M (P (−)

M ) (M = µ for a vector and M = 5 for
a pseudo-scalar) annihilates (creates) a heavy meson con-
taining a heavy quark (anti-quark) with velocity v. Fur-
thermore, Dµ

ba = δbaDµ−Vµ
ba, where a, b are flavor indices.

The vector and axial vector fields Vµ and Aµ are defined
by

Vµ ≡ i
2
(ξ†∂µξ + ξ∂µξ†) ,

Aµ ≡ − i
2
(ξ†∂µξ − ξ∂µξ†) ,

ξ ≡ exp[iΠ/f ] , (10)

where f is the bare pion coupling, and Π is a 3 by 3
matrix which contains the Goldstone bosons π, K, η in the
standard way. The ellipses in (8) denote terms of higher
order in the chiral expansion.

Based on the symmetry of HQEFT, we can obtain the
bosonized currents. For a decay of the bq̄ system we have
[13,22]

qL γµ Q(+)
vb

−→ αH

2
Tr

[
ξ†γαL H

(+)
b

]
, (11)
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Fig. 1. Factorized contribution for B0 → D+D−
s through the

spectator mechanism, which does not exist for decay mode
B0 → D+

s D−
s

where αH = fH
√

mH and L = (1−γ5)/2 is the left-handed
projector in Dirac space. In the limit mQ → ∞, αB =
αD = αH , but there are 1/mQ and perturbative QCD
corrections to this limit [13,14]. Here Q

(+)
vb is the heavy b-

quark field, vb is its velocity, and H
(+)
b is the corresponding

heavy meson field.
For the W -boson materializing to a D̄-meson we obtain

qLγµ Q
(−)
v̄ −→ αH

2
Tr

[
ξ†γαLH

(−)
c̄

]
, (12)

where Q
(−)
v̄ and v̄ (= vc̄) is the heavy quark field and

the velocity of the c̄ quark, respectively, and H
(−)
c̄ is the

corresponding field for the D̄-meson. Similarly, for the b →
c transition, the bosonized current is

Q
(+)
vb γµ LQ(+)

vc
−→ −ζ(ω)Tr

[
H

(+)
c γαLH

(+)
b

]
, (13)

where Q
(+)
vc and vc is the heavy quark field and the veloc-

ity of the c-quark, respectively. Furthermore, ζ(ω) is the
Isgur–Wise function for the B̄ → D transition, H

(+)
c the

heavy D-meson field(s), and ω ≡ vb · vc = vb · v̄ = 1/(2κ),
where κ ≡ MD/MB .

For the weak current for DD̄ production (correspond-
ing to the factorizable annihilation mechanism) we obtain

Q
(+)
vc γµ LQ

(−)
v̄ −→ −ζ(−λ)Tr

[
H

(+)
c γαLH

(−)
c̄

]
, (14)

where λ = v̄ ·vc = (1/(2κ2)−1), and ζ(−λ) is a (complex)
function less studied and not so well known as ζ(ω) in (13).

The factorized contributions for the spectator and an-
nihilation diagrams are shown in Figs. 1 and 2. The first
diagram does not give any (direct) contributions to the
class of processes we consider, but it is still important be-
cause it is the basis for our chiral loops.

The non-factorizable chiral loop contributions to the
amplitudes can be visualized in Fig. 3, where the heavy
pseudo-scalar mesons are represented by single lines, the
heavy vector mesons by double lines, the light kaons by

�
B

b

d �D+
s

D−
s

c

s

c

Fig. 2. Factorized contribution for B0 → D+
s D−

s through the
annihilation mechanism, which give zero contributions if both
D+

s and D−
s are pseudoscalars

dashed lines, and the weak vertex by two circles. As seen
from Fig. 3, the chiral loop contribution can be divided
into two topologies that we will denote as topology I and
topology II, respectively. In the topology I (diagrams A01,
A11, A21, A22, A31(A41), and A32(A42) in Fig. 3) the B-
meson radiates K̄0, becoming a bs̄ state that decays into
D−(D−∗) and D+

s (D+∗
s ). The K̄0-meson is then reab-

sorbed by D−(D−∗) giving the D−
s (D−∗

s ) state. In the
topology II (diagrams A02, A12, A13, A23, A24, A33(A43) ,
A34(A44), and A35(A45) in Fig. 3), the B-meson decays
into D−(D−∗) and D+(D+∗) which then re-scatter by
means of a kaon into D−

s (D−∗
s ) and D+

s (D+∗
s ). In both

cases, the amplitudes for intermediate B̄0 → D+D− or
B̄s → D−D+

s processes (and similar for one or two vectors
in a final state) can, within the factorized limit, be writ-
ten as the product of currents (12) and (13) multiplied by
the numerically favorable Wilson coefficient combination
(C2 + C1/Nc). Vertices describing absorption or radiation
of a kaon are given by (8). There are of course also fac-
torizable loop contributions, but these are included in the
decay constants fD,B and the Isgur–Wise functions.

The calculation of the chiral loop amplitudes includes
the calculation of a divergent integral of the form

I(v1, v2)σρ (15)

=
1
4

∫
dDk

(2π)D

kσ kρ

(k · v1 + iε)(k · v2 + iε)(k2 − m2
K + iε)

.

In the dimensional regularization method, the integral can
be rewritten as

I(v1, v2)σρ

=
1
4
I1

[
−r gσρ

D +
r − x

1 − x2 (vσ
1 vρ

1 + vσ
2 vρ

2)

+
1 − x r

1 − x2 (vσ
1 vρ

2 + vσ
2 vρ

1)
]

, (16)

where gσρ
D is a D-dimensional matrix tensor and

I1 ≡
∫

dDk

(2π)D

1
k2 − m2

K

=
im2

K

16π2

[
∆ − ln

m2
K

µ2 + 1
]

,

(17)
with ∆ = 2/(4 − D) − γE + ln 4π. Here r = r(x) with
x = v1 · v2 is a function defined by

r(x) =
1√

x2 − 1
ln

(
|x| +

√
x2 − 1

)
, (18)
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Fig. 3. Feynman diagrams for the chiral loop contributions. For B0 → D+∗
s D−∗

s , the diagrams A4i stand for contributions
proportional to the Levi-Civita term
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for x > 0, and

r(x) = − 1√
x2 − 1

(ln
(
|x| +

√
x2 − 1

)
− iπ) , (19)

for x < 0.

2.3 The heavy–light chiral quark model (HLχQM)

The HLχQM Lagrangian can be written as

LHLχQM = LHQEFT + LχQM + LInt . (20)

The first term describes the interaction of heavy quarks
in (7). The second term describes the interactions of light
quarks with light (Goldstone) mesons in terms of the chiral
quark model (χQM) [15,16,24–26]:

LχQM = χ̄ [γµ(iDµ + Vµ + γ5Aµ) − m] χ . (21)

Here m = 0.23 ± 0.02 GeV is the SU(3) invariant con-
stituent light quark mass, and χ is the flavor rotated
quark fields given by χL = ξ†qL and χR = ξqR, where
qT = (u, d, s) are the light quark fields. The left- and
right-handed projections qL and qR are transforming af-
ter SU(3)L and SU(3)R respectively. In (21) we have dis-
carded terms involving the light current quark mass which
are irrelevant in the present paper (but become important
when calculating counterterms). The covariant derivative
Dµ in (21) contains the soft gluon field forming the gluon
condensates. The effects based on (21) can be calculated
by Feynman diagram techniques as in [11–13,24,25] or by
the means of heat kernel techniques as in [16,21,26].

The interaction between heavy meson fields and quarks
is described by [13,17,18,20,19]:

LInt = −GH

[
χa H

(±)
a Q(±)

v + Q
(±)
v H(±)

a χa

]
, (22)

with the coupling constant GH =
√

2mρ/f , where ρ is
a hadronic parameter (of the order one) depending on m
[13].

Within the model, one finds the following expression
for the Isgur–Wise function [13]:

ζ(ω) =
2

1 + ω
(1 − ρ) + ρ r(ω) , (23)

where r(ω) is given by (18). In the simple expression (23)
chiral loop and perturbative QCD corrections down to the
scale µ = Λχ have not been taken into account. Neverthe-
less, it gives a good description of the Isgur–Wise function
[13]. For negative values of the argument the Isgur–Wise
function ζ(−λ) is, within the HLχQM [13], still given by
(23) with ω → −λ.

Performing the bosonization of the HLχQM, one en-
counters divergent loop integrals which will in general be
quadratically, linearly and logarithmically divergent [13].
The quadratically and logarithmically divergent integrals
are related to the quark condensate and the bare pion
decay constant f [25], respectively. The linearly divergent

�
B0

d

b

�D+
s

D−
s

c

s

c

Fig. 4. Non-factorizable contribution for B0 → D+
s D−

s

through the annihilation mechanism with additional soft gluon
emision. The wavy lines represent soft gluons ending in vacuum
to make gluon condensates

integral (which is finite within dimensional regularization)
is related to the axial coupling gA in (8).

The gluon condensate contribution to the amplitudes
can be written, within the framework presented in the
previous section, in a quasi-factorized way as a product of
matrix elements of colored currents:

〈D+
s D−

s |LW |B0〉G
NF (24)

= 8C2 〈D+
s D−

s |cLγµtacL|G〉〈G|dLγµtabL|B0〉 ,

where the superscript G and subscript NF on the left-
hand side stand for “gluonic non-factorizable contribu-
tion”. Furthermore G in the brackets symbolizes the emis-
sion of a gluon as visualized in Fig. 4. The left part in Fig. 4
gives us the bosonized colored current:(

qL ta γα Q(+)
vb

)
1G

−→ (25)

−GH gs

64π
Ga

µνTr
[
ξ†γαL H

(+)
b (σµν − F {σµν , γ · vb} )

]
,

where Ga
µν is the octet gluon tensor, and F ≡

2πf2/(m2 Nc) is a dimensionless quantity of the order 1/3.
The symbol { , } denotes the anti-commutator.

For the creation of a DD̄ pair in the right part of Fig. 4
(the analogue of (25)) one gets(

Q
(+)
vc ta γα LQ

(−)
v̄

)
1G

−→
G2

H gs

128πm(λ − 1)
Ga

µν (26)

×Tr
[
H

(+)
c γαLH

(−)
c̄ (Xσµν + {σµν , γ · ∆v} )

]
,

where
X ≡ 4

π
(λ − 1) r(−λ) , (27)

and ∆v = vc − v̄. Multiplying the currents in (25) and
(26), and replacing the product of gluon tensors by the
gluon condensate:

g2
sGa

µνGa
αβ → 4π2

〈αs

π
G2

〉 1
12

(gµαgνβ − gµβgνα) , (28)

we obtain a bosonized effective Lagrangian term which is
1/Nc suppressed compared to the factorized contributions.
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This effective Lagrangian term corresponds to a certain
linear combination of a priori possible 1/Nc suppressed
terms at the tree level in the chiral perturbation theory
sense.

3 Calculating the decay amplitudes

First, for comparison, we give the factorized amplitude for
the process B0 → D+D−

s

A(B0 → D+D−
s )F (29)

=
(

C2 +
C1

Nc

)
ζ(ω)fDMD

√
MBMD (λ + ω) .

The B̄0 → MM̄ , M = D+
s , D+∗

s decay amplitudes can be
written in the following form:

A(B → DD̄) = FPP
0 ,

A(B → D∗D̄) = iFV P
0 εD∗ · v̄ , (30)

A(B → DD̄∗) = iFV P
0 εD̄∗ · vc , (31)

A(B → D∗D̄∗) = FV V
0 εD∗ · εD̄∗ + FV V

1 εD∗ · v̄ εD̄∗ · vc

+FV V
2 iεαβµνvα

c v̄βεµ
D∗εν

D̄∗ , (32)

with the reduced amplitudes FNN
i , containing the con-

tributions coming from the tree level factorizable contri-
butions FNN

i,fc , gluon condensates FNN
i,gc and chiral loops

FNN
i,cl :

FNN
i = FNN

i,fc + FNN
i,gc + FNN

i,cl , (33)

where N = P, V mean the pseudoscalar D and vector
meson D∗, respectively.

The factorizable amplitude for B0 → MM̄ , M =
D+

s , D+∗
s comes from the annihilation diagram:

〈D−
s D+

s |LW |B0〉F (34)

= 4
(

C1 +
1

Nc
C2

)
〈D−

s D+
s |cLγµcL|0〉〈0|dLγµbL|B0〉 ,

and is proportional to a numerically non-favorable com-
bination of Wilson coefficients. Using (11) and (14) we
obtain the following values for the reduced amplitudes:

FPV
0,fc = −FV P

0,fc = FV V
2,fc

√
MD

MD∗
(35)

= 2
(

C1 +
C2

Nc

)
ζ(−λ)αB κ

√
MBMDMD∗ ,

FPP
0,fc = FV V

0,fc = FV V
1,fc = 0 . (36)

Using (25)–(28), we obtain the gluon condensate con-
tributions (the color suppressed 1/Nc contributions at the
tree level) to the reduced amplitudes illustrated in Fig. 4:

FPP
0,gc = 3 S

(
X +

4
3
(λ − 1)

)
,

FV P
0,gc = S (X [1 − 2F ] + 4 [λ + 2F ]) , (37)

FPV
0,gc = S (X [3 + 2F ] + 4 [(λ − 2) − 2F ]) ,

FV V
0,gc = 2κ2S X (λ + 1) , (38)

FV V
1,gc = −2κ2S (X − 4) ,

FV V
2,gc = 2κ2S (X − 4)(1 + 2F ) , (39)

where F is defined below (25), X is defined in (27), and

S ≡ C2
(
GH

√
MB

)3

3 · 29m(λ − 1)

〈αs

π
G2

〉
. (40)

In the evaluation of the integrals (16) and (17) appear-
ing in the reduced chiral loops amplitudes FNN

i,cl , we use
the MS scheme and we take µ � Λχ � 1 GeV. The integral
(17) contains a logarithmicly divergent term and a con-
stant term. However, additional contributions to the con-
stant term might come from counterterms. The finite part
of these terms is unknown and therefore, in our numeri-
cal computation, we take into account logarithmic terms
only, which are independent of the counterterms contri-
butions, and we consider constant term contributions as
theoretical uncertainities of our approach.

However, the products of two Levi-Civita terms enter
in our computation of the amplitudes coming from dia-
grams A13 , A22 , A32 , A35 and A45. Within dimensional
regularization, these products are not uniquely defined.
This is related to the problem known in the literature as
the γ5 scheme dependence [27]. However, this scheme de-
pendence appears in the constant terms only. To estimate
its influence on numerical results, we use two different
approaches to the products of two Levi-Civita symbols.
(One is the dimensional reduction [27] and the second one
is a variation of the dimensional reduction in which the
products of metric tensors in D dimensions and the met-
ric tensor in 4-dimensions are fixed on the 4-dimensional
space.)

The logarithmic contributions to the reduced ampli-
tudes are

FPP
0,cl = iK

√
MD

M∗
D

(41)

× [−2(1 + ω) (r(−ω) + r(−λ)) + 2(ω + λ)] ,

FV P
0,cl = −iK [−2κ (r(−ω) + r(−λ)) + 2(κ + 1)] ,

(42)

FPV
0,cl = −iK [2κ (r(−ω) + r(−λ)) + 2(κ + 1)] ,

(43)

FV V
0,cl = iK

√
M∗

D

MD
(2(ω + 1)) , (44)

FV V
1,cl = iK

√
M∗

D

MD
((κ + 1)2 [r(−ω) + r(−λ)]

− 2(ω + λ)(H + G) − 2κ2) , (45)

FV V
2,cl = −iK

√
M∗

D

MD
2κ, (46)
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Table 1. Reduced amplitudes for the B0 → MM̄ , M = D+
s , D+∗

s decay modes. The results are
given in GeV

i F PP
0,i × 107 F V P

0,i × 107 F PV
0,i × 107 F V V

0,i × 107 F V V
1,i × 107 F V V

2,i × 107

fc 0 0.12i −0.12i 0 0 −0.12i
gc −0.17 − 0.71i 1.11 + 0.14i −0.51 + 0.87i 0.13 − 0.22i −0.13 + 0.06i 0.22 − 0.09i
cl 0.91 − 1.20i −0.23 + 0.19i −0.08 − 0.21i 0.56 + 0.03i −0.24 − 0.45i −0.09

Table 2. Reduced amplitudes for the B0
s → NN̄ , N = D+, D+∗ decay modes. The results are

given in GeV

i F PP
0,i × 107 F V P

0,i × 107 F PV
0,i × 107 F V V

0,i × 107 F V V
1,i × 107 F V V

2,i × 107

fc 0 0.51i −0.51i 0 0 −0.51i
gc −0.74 − 3.16i 4.95 + 0.63i −2.27 + 3.69i 0.60 − 1.00i −0.59 + 0.25i 0.99 − 0.42i
cl 3.78 − 4.96i −0.96 + 0.78i −0.34 − 0.85i 2.13 + 0.10i −0.91 − 1.72i −0.34 − 0.02i

where

K ≡ 1
2
C2 ζ(ω)αD

(
gA

f

)2

IL

√
MBMD∗MD ,

IL ≡ −im2
K

16π2 ln
m2

K

µ2 , (47)

G ≡ (r(−ω) + ω)
1 − ω2 κ2 − (1 + ω r(−ω))

1 − ω2 κ ,

H ≡ − (1 + λ r(−λ))
1 − λ2 . (48)

Note that K is a priori proportional to the Wilson coeffi-
cient combination (C2 +C1/Nc), as the amplitude in (29).
But because the factor 1/f2 is already of order 1/Nc, we
replace (C2 + C1/Nc) by just C2 in (47).

4 Results and discussion

In our calculation we used the following input parameters:
αB = αD = 0.33 GeV−3/2, ρ = 1.05, GH = 7.5 GeV−1/2

and
〈

αs
π G2

〉
= [(0.315 ± 0.020) GeV]4 [12,13], gA = 0.6

[23], fπ = 0.093 GeV [3] and κ = 0.37. The reduced am-
plitudes for B0 → MM̄ , M = D+

s , D+∗
s are presented in

Table 1. We find the following branching ratios1:

Br(B̄0 → D+
s D−

s ) = 2.5 × 10−4 ,

Br(B̄0
s → D+D−) = 4.5 × 10−3 , (49)

Br(B̄0 → D+∗
s D−

s ) = 3.3 × 10−4 ,

Br(B̄0
s → D+∗D−) = 6.8 × 10−3 , (50)

Br(B̄0 → D+
s D−∗

s ) = 2.0 × 10−4 ,

Br(B̄0
s → D+D−∗) = 4.3 × 10−3 , (51)

Br(B̄0 → D∗+
s D−∗

s ) = 5.4 × 10−4 ,

Br(B̄0
s → D∗+D−∗) = 9.1 × 10−3 . (52)

1 In the previous paper [5] some different numbers where
given due to the incorrect sign for the chiral logarithm in [5].

The contribution of the constant term and the corre-
sponding counterterm can change the branching ratio for
the B-meson decaying into two pseudoscalars by about
10%, while in the case of decay into one pseudoscalar and
one vector D-meson, this contribution is in the range of
20–40%. In the case of a B-meson decaying into two vec-
tor mesons, the constant term is estimated to be 2–8 times
larger than the logaritmic contribution, depending on the
choice of the scheme in which the products of two Levi-
Civita terms are considered. The uncertainty in input pa-
rameters can result in an additional error for the branch-
ing ratios. We estimate that it can be of the order of 20%.
Within our approach the 1/mQ corrections, with Q = c, b,
have been neglected. At least the 1/mc corrections might
be important.

The study of dominant contributions in the B̄0
d →

D+
s D−

s , B̄0
d → D+∗

s D−
s and B̄0

d → D+
s D−∗

s decay ampli-
tudes is very important for our understanding of the color
suppressed contributions to the B-mesons decaying to two
charm mesons. This is even more important knowing that
the experimental rates for Bd decay into D−D+

s , D−∗D+
s ,

D−D∗+
s and D∗−D∗+

s have very small color suppressed
contributions and therefore the decay amplitudes we con-
sider open a window for studies of color suppressed effects
in B decays to two charm mesons. The chance for exper-
imental measurements of these decay rates at B-factories
makes the study of the decay mechanisms in these decays
even more important.

Appendix A:
Chiral loops with “superpropagator”

In the following, we will briefly present a “superpropagator
method” which enables us to calculate all contributions of
one kind of topology to all decays of a type B̄0 → MM̄ ,
M = D∗

s , D+∗
s as one compact calculation. This means

that instead of calculating all the diagrams in Fig. 3, we
only need to calculate two contributions, each one coming
from one topology.
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The superpropagator is a propagator of the H(±)(x)
field and therefore includes propagators of both heavy
pseudo-scalar and heavy vector meson. It is defined
in a standard way as a contraction of H(±)(x)αβ and
H(±)(y)κλ, where α, β, κ, λ are Dirac spinor indices. In
momentum space, we obtain the superpropagator

S
(±)
αβ;κλ(k) =

1
2(±v · k + iε)

T
(±)
αβ;κλ(v) , (A.1)

where k is the momentum and

T
(+)
αβ;κλ(v) = (P+(v)γτ )αβ (−gτν + vτvν) (γνP+(v))κλ

− (P+(v)γ5)αβ (γ5P+(v))κλ , (A.2)

T
(−)
αβ;κλ(v) = (γτP−(v))αβ (−gτν + vτvν) (P−(v)γν)κλ

− (γ5P−(v))αβ (P−(v)γ5)κλ . (A.3)

For the effective Lagrangian of topology I we have

LI(B → DD̄) = −iC2ζ(ω)
αD

2

(
gA

f

)2

× I(vb,−v)σρ
[
H

(+)
c γµL

]
βα

T
(+)
αβ;κλ(vb) (A.4)

×
[
H

(+)
b γσγ5

]
λκ

[
H

(−)
c̄ γργ5

]
ηδ

T
(−)
δη;φξ(v) [γµL]ξφ ,

while the effective Lagrangian of topology II can be writ-
ten as

LII(B → DD̄) = −i C2ζ(ω)
αD

2

(
gA

f

)2

× I(vc,−v)σρ
[
γσγ5H

(+)
c

]
βα

T
(+)
αβ;κλ(vc) (A.5)

×
[
γµLH

(+)
b

]
λκ

[
H

(−)
c̄ γργ5

]
ηδ

T
(−)
δη;φξ(v) [γµL]ξφ .

From (A.4) and (A.5) one can derive the (reduced) ampli-
tudes already given in (41)–(46).
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